
1

Armstrong State University
Engineering Studies

MATLAB Marina – Linear Algebraic Equations Primer

Prerequisites
The Linear Algebraic Equations Primer assumes knowledge of the MATLAB IDE, MATLAB help,
arithmetic operations, built in functions, scripts, variables, arrays, logic expressions, conditional
structures, iteration, functions, and debugging. Material on these topics is covered in the
MATLAB Marina Introduction to MATLAB module, MATLAB Marina Variables module, MATLAB
Marina Arrays module, MATLAB Marina Logic Expressions module, MATLAB Marina Conditional
Structures module, MATLAB Marina Iteration module, MATLAB Marina Functions module, and
MATLAB Marina debugging module.

Learning Objectives
1. Be able to create matrices using MATLAB.
2. Be able to index matrices using MATLAB.
3. Be able to perform arithmetic operations on matrices using MATLAB including: addition,

subtraction, multiplication, transpose, and inverse.
4. Be able to determine when to use scalar, matrix, and element by element operations.
5. Be able to solve systems of linear equations using the matrix form of the equations and

MATLAB.

Terms
scalar, matrix, identity matrix, matrix addition, matrix subtraction, matrix multiplication, matrix
transpose, matrix inverse, system of linear equations, nonsingular matrix, determinant,
Gaussian elimination (back division)

MATLAB Functions, Keywords, and Operators
+, -, *, ‘, \, size, inv, det, cond, eye, ones, zeros

Matrices
Recall that an array is a multi-dimensional collection of data of the same data type. A matrix is
also a 1D or 2D collection of data of the same type. One dimensional matrices are typically
referred to as vectors. A 1 x m matrix is a row vector and an m x 1 matrix is a column vector.

[]1 2 mvRow v v v=

1

2

m

v
v

vCol

v

 =

The two-dimensional matrix V below has n rows and m columns (m times n total elements). The
element in row p and column q is referred to as the pq element of the matrix.

2

11 12 1

21 22 2

1 2

m

m

n n nm

v v v
v v v

V

v v v

 =

Matrices are treated the same as arrays in MATLAB. Matrices are created, accessed, and
modified in the same way that arrays are. Generally when we are performing matrix
operations, such as matrix multiplication or matrix inverse, on an array we will refer to the
array as a matrix, otherwise we will refer to it as an array.

The Identity matrix, denoted by nI , is a square matrix with ones along its diagonal and zeros
everywhere else. The MATLAB function eye will create an identity matrix. The statement
eye(M) creates a M by M identity matrix and eye(N,M)creates a N by M matrix with 1s on
the diagonal and zeros everywhere else. The N by M matrix generated by the eye function is
not an identity matrix as it is not square.

Operations on Matrices
Most built in MATLAB functions will accept matrices as arguments since matrices are arrays.
Generally MATLAB functions perform their operation on each element in the argument and
return a result the same size as the argument.

The MATLAB length and size functions work for matrices just as for arrays; the length
function returns the largest dimension of the matrix and the size function returns the
dimensions of the matrix.

Logic operations can be performed on elements, portions, or the entire matrix just as with
arrays. Logic operations can be performed on two matrices of the same size or a matrix and a
scalar, just as for arrays. Generally when performing logical operations, we would refer to the
data collection as an array not a matrix.

>> eye(3)
ans =
 1 0 0
 0 1 0
 0 0 1
>> eye(2,3)
ans =
 1 0 0
 0 1 0

Figure 1, MATLAB eye Function

3

Two matrices A and B are equal (A = B) if the matrices are the same size and all their
corresponding entries are equal. The two matrices A and B below are equal if 11 11a b= , 12 12a b=
, 21 21a b= , and 22 22 a b= .

11 12

21 22

a a
A

a a

=

 11 12

21 22

b b
B

b b

=

The MATLAB equality operator == performs element by element comparison for equality and so
it is not a matrix equality operator. The equality operator compares all of the corresponding
elements of the two matrices (or a matrix to a scalar) and returns an array of Booleans of the
same size as the matrix.

Arithmetic Operations on Matrices
Array (element by element) arithmetic operations (addition, subtraction, element by element
multiplication, element by element division, element by element power) can be performed on
all the elements of an matrix as long as the operation involves two matrices of the same size or
a matrix and a scalar. MATLAB also supports matrix addition, matrix subtraction, matrix
multiplication, and matrix power. Generally when performing element by element operations,
we would refer to the data collection as an array not a matrix.

The sum of two matrices A and B is written A + B and the difference is written A - B. Matrix
addition is commutative but matrix subtraction is not. The sum (or difference) of two matrices
is a matrix of the same size whose entries consist of the sum (difference) of the two
corresponding entries of the two matrices. Matrix addition and subtraction can only be
performed on matrices of the same size. For the 2 x 2 matrices A and B below

11 12

21 22

a a
A

a a

=

 11 12

21 22

b b
B

b b

=

>> F = [0, 1, 2 ; 3, 4, 5];
>> G = [2, 3 ; 5, 6];
>> F == G
??? Error using ==> eq
Matrix dimensions must agree.
>> G = [2, 2, 2; 5, 6, 7];
>> F == G
ans =
 0 1 0
 0 0 0
>> F == 3
ans =
 0 0 1
 0 0 0

Figure 2, Logic Equality Operator Applied to Matrices

4

The sum and difference of the matrices are

11 11 12 12

21 21 22 22

a b a b
A B

a b a b
+ +

+ = + +
 and 11 11 12 12

21 21 22 22

a b a b
A B

a b a b
− −

− = − −

Matrix addition and subtraction are defined the same way as element by element addition and
subtraction so there is not a separate dot operator for the element by element versions of
these arithmetic operators.

The product or multiplication of two matrices A and B is written AB or A*B. Matrix
multiplication is not commutative. Matrix multiplication is defined for matrices where the size
of the inner dimensions match, i.e. the number of columns of first matrix equals the numbers of
rows of the second matrix. An m p× matrix A can be multiplied by a q n× matrix B if p q= .
The result of multiplying an m p× matrix A by a p n× matrix B is a m n× matrix AB whose ij
entry is the ith row of the matrix A multiplied by the jth column of matrix B.

The product of a 1 n× row vector and a 1n× column vector is a 1 1× matrix (a scalar)

()

1

2
1 2 1 1 2 2

1

n

n n n k k
k

n

b
b

a a a a b a b a b a b

b
=

 = + + + =

∑

The product of two 2 2× matrices is a 2 2× matrix

11 12

21 22

a a
A

a a

=

 and 11 12

21 22

b b
B

b b

=

, then 11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

a b a b a b a b
AB

a b a b a b a b
+ +

= + +

Matrix multiplication is not the same operation as element by element multiplication. The
matrix multiplication operator is * and the element by element multiplication operator is the
dot multiply .*.
Multiplying a matrix by the appropriate sized identity matrix does not change the matrix, i.e.
the result is the original matrix.

>> F = [0, 1, 2 ; 3, 4, 5];
>> G = [2, 3 ; 5, 6];
>> F*G
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> G*F
ans =
 9 14 19
 18 29 40

Figure 3, Matrix Multiplication Example

5

Figure 3 shows a MATLAB function for matrix multiplication. It is better to use the MATLAB
matrix multiplication operator than your own matrix multiplication function.

MATLAB supports two types of matrix division (\ and /) along with the two types of array
division (.\ and ./). Matrix division using \ and / should generally not be used as they do not
correspond to legal linear algebraic matrix operations. One exception to this is the case where
you have a square matrix A and a column vector b, in which case x = A\b using left matrix divide
(matrix back division) gives the solution to Ax = b using Gaussian elimination.

Of the two array division operators, generally one should use the right divided version (./),
where A./B divides each entry of A by the corresponding entry of B or divides all elements of A
by B when B is a scalar.

Raising a matrix A to a power n is written nA . Matrix power is only defined for square matrices
and the power must be a scalar. The matrix power nA is equivalent to multiplying the matrix A
by itself 1n − times. Matrix power is a postfix operator (operator applied at end of the variable
to operate on) and is not the same operation as element by element power. The matrix power
operator is ^ and the element by element power operator is the dot power .^.

function result = multiplyMatrix(A, B)
% obtain dimensions of A and B
[nrowA, ncolA] = size(A);
[nrowB, ncolB] = size(B);
result = [];
% check that dimensions compatible for matrix multiplication
if (ncolA == nrowB)
 result = zeros(nrowA, ncolB);
 for k1 = 1 : 1 : nrowA
 for k2 = 1 : 1 : ncolB
 % multiply each element of A in row k1
 % by each element of B in column k2, element k1,k2
 % of result is sum of the multiplications
 for k3 = 1 : 1 : ncolA
 result(k1,k2) = result(k1,k2) + A(k1,k3)*B(k3,k2);
 end
 end
 end
else
 disp('Inner dimensions do not agree');
end

end

Figure 3, multiplyMatrix Function

6

Matrix Transpose and Matrix Inverse
The transpose of matrix changes the rows of a matrix to columns and the columns of a matrix
to rows. The conjugate transpose operator is a single quote and is a postfix operator and takes
the conjugate of all complex valued elements as well as performing the transpose operation.
The non-conjugate transpose operator is a period followed by a single quote and only performs
the transpose operation. When the matrix consists of only real valued numbers it does not
matter which transpose operator you use but it is good style to use the conjugate transpose
only when the conjugate of values is intended.

The transpose of a row vector is a column vector and the transpose of a column vector is a row
vector.

()

1

2
1 2 m

m

a
a

a a a

a

′ =

 and ()

1

2
1 2 m

m

a
a

a a a

a

′

 =

The transpose of a 2 3× matrix 11 12 13

21 22 23

a a a
A

a a a

=

 is a 3 2× matrix
11 21

12 22

13 23

a a
A a a

a a

 ′ =

The inverse of a matrix A written 1A− is a matrix such that 1 1AA A A I− −= = , where I is the
identity matrix. The inverse of a matrix is only defined for square matrices (number rows equals
number of columns) that have full rank (determinant is non-zero). MATLAB has built in
functions inv and det for computing the inverse and determinant of a matrix.

MATLAB allows matrix division, but this is not a legal linear algebraic operation so avoid using
this. Multiply by the matrix inverse on the appropriate side instead of performing matrix
division.

>> F = [0 1 2 ; 3 4 5];
>> F.'
ans =
 0 3
 1 4
 2 5

Figure 4, Matrix Transpose Example

7

Solving Systems of Linear Equations
A system of n linear equations in n unknowns can be written in the matrix form Ax b= , where
A is a n by n square matrix of coefficients, x is an n by 1 column vector of unknowns, and b is a
n by 1 column vector of constants. Systems of linear equations will have a unique solution when
the number of independent equations and unknowns are equal. For example the system
3 4x y− =

0x y+ =
has as its unique solution, x = 1, y = -1. The MATLAB code of Figure 6 determines the solution to
this system of linear equations.

The coefficient matrix A of the matrix form of the system of linear equations is square when the
number of equations and unknowns are equal. If the coefficient matrix A is square and has full
rank (determinant is nonzero) then the matrix A has an inverse and the solution to the matrix
form of the system of linear equations Ax b= can be found via 1x A b−= . If the number of
independent equations is greater than the number of unknowns the system is said to be over
constrained and there may not be a solution. If the number of independent equations is less
than the number of unknowns the system is said to be under constrained and there are an
infinite number of solutions. The coefficient matrix A of the matrix form of the system of linear
equations is non-square in these cases and the coefficient matrix is thus not invertible.

The MATLAB code of Figure 7a determines the solution to the system of linear equations
2 3 4 9x y z− + =

2 3 1 5x y z .+ + =

A = [3 -1; 1 1];
b = [4 ; 0];
x = inv(A)*b;

Figure 6, Solving System of Linear Equations

>> A = [1 0 4; -3 1 -1; 0 7 1];
>> det(A)
ans = -76
>> inv(A)
ans =
 -0.1053 -0.3684 0.0526
 -0.0395 -0.0132 0.1447
 0.2763 0.0921 -0.0132
>> A*inv(A)
ans =
 1.0000 -0.0000 0.0000
 -0.0000 1.0000 -0.0000
 0.0000 0.0000 1.0000

Figure 5, Matrix Inverse Example

8

7 2 12x y z− − + = −
The matrix form of the equations is:

2 3 4 9
1 2 3 1 5
7 1 2 12

x
y .
z

−
 =
 − − −

The solution to this system of linear equations is: x = 2.0, y = -1.0, and z = 0.5.

Systems of linear equations can also be solved using Gaussian elimination. The MATLAB back
division operator \ can be used to perform Gaussian elimination to solve a system of linear
equations. For an n by n square matrix A and an n by 1 column vector b, the equation Ax b=
can be solved using Gaussian elimination via \x A b= . The MATLAB code of Figure 7b
determines the solution of the system of linear equations using Gaussian elimination.

When solving systems of linear equations numerically, one must be careful that the problem is
well posed. The condition number of a matrix is a measure of the sensitivity of the solution of a
system of linear to errors in the equation coefficients. The condition number provides an
indication of whether the inverse of the A matrix and the solution of the system of linear
equations will be accurate. Condition numbers near one indicate a well condition matrix (the
condition number of the identity matrix is one) and large condition numbers indicate that the
matrix is near to being singular (and the numerical matrix inverse may not be accurate). See
MATLAB’s help on the cond function for more information.

Last modified Thursday, November 13, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

A = [2 -3 4 ; 1 2 3 ; -7 -1 2];
b = [9 ; 1.5 ; -12];
x = inv(A)*b;

Figure 7a, Solving System of Linear Equations using Matrix Inverse

A = [2 -3 4 ; 1 2 3 ; -7 -1 2];
b = [9 ; 1.5 ; -12];
x = A\b;

Figure 7b, Solving System of Linear Equations using Gaussian Elimination

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Matrices
	Operations on Matrices
	Arithmetic Operations on Matrices
	Matrix Transpose and Matrix Inverse
	Solving Systems of Linear Equations

