
1

Armstrong State University
Engineering Studies

MATLAB Marina – 2D Arrays and Matrices Primer

Prerequisites
The 2D Arrays and Matrices Primer assumes knowledge of the MATLAB IDE, MATLAB help,
arithmetic operations, built in functions, scripts, variables, and 1D arrays and vectors. Material
on these topics is covered in the MATLAB Marina Introduction to MATLAB module, MATLAB
Marina Variables module, and MATLAB Marina 1D Arrays and Vectors Module.

Learning Objectives
1. Be able to create and use MATLAB 2D arrays.
2. Be able to index MATLAB 2D arrays.
3. Be able to perform arithmetic and logic operations and apply built in functions on MATLAB

2D arrays.

Terms
scalar, 1D array, 2D array, vector, matrix, row, column, index, indexing (extracting, slicing),
colon operator, colon notation, concatenation, array operation, element by element operation,
transpose

MATLAB Functions, Keywords, and Operators
:, length, size, zeros, ones, min, max, mean, sum, cumsum, find, end, (), [], ‘

MATLAB 2D Arrays
A 2D array or matrix is a two-dimensional collection of data of the same data type. A 2D array
with n rows and m columns contains n times m elements.

11 12 1

21 22 2

1 2

m

m

n n nm

a a a
a a a

AA

a a a

 =

Each row of the n by m array contains m elements and each column contains n elements. The
element in row p and column q is referred to as the pq element of the array.

Creating 2D Arrays
2D arrays can be created in MATLAB similar to 1D arrays: entering the values directly enclosed
by square brackets (row elements separated by commas or spaces and rows are separated by
semicolons), using the colon operator to create rows or columns and concatenating the
rows/columns, using built in MATLAB functions such as zeros, ones, and rand, and as the
result of operations on arrays. Figure 1a shows examples of creating 2D arrays by directly
entering the values and using the colon operator and Figure 1b shows examples of creating 2D

2

arrays using built in MATLAB functions. MATLAB’s colon operator creates row vectors and if a
column is desired the transpose operator can be used to convert rows to columns.

2D Arrays must be rectangular in shape; all rows of an array must have the same number of
elements and all columns of an array must have same number of elements, i.e. all rows must
have same number of columns and columns must have same number of rows. This is important
for determining when arrays can be concatenated together to create larger arrays.

Size of Arrays
The size command returns the dimensions of the array. The length command returns the
largest dimension of the array, i.e. the larger number of the number of rows or columns.
Generally, the length command is used with 1D arrays and the size command with 2D
arrays.

There are three common usages of the size function for a 2D array XX:

• D = size(XX) returns a two-element row vector D with the first element being the
number of rows and the second element the number of columns

• [M,N] = size(XX) returns the number of rows and columns in separate varaibles
M and N, M is the number of rows and N is the number of columns

• M = size(XX,DIM) returns the length of the array dimension specified by the DIM
argument, for 2D arrays size(XX,1) returns the number of rows and size(XX,2)
returns the number of columns

Figure 2 shows examples of using the size and length commands on a 2D array.

>> A = [0, 1, 2; 3, 4, 5; 6, 7, 8]; % 3 by 3 array
>> B = [0.0:0.5:5.0; 0.0:0.25:2.5]; % 2 by 11 array
>> C = [(1:1:5)’, (2:2:10)’]; % 5 by 2 array
>> D1 = [1:1:15]; % 1 by 15 array
>> D2 = [2:2:30]; % 1 by 15 array
>> D3 = [5; 10]; % 2 by 1 array
>> D = [D1; D2]; % 2 by 15 array
>> E = [D, D3]; % 2 by 16 array

Figure 1a, Creating 2D Arrays Using Direct Entry, Colon Operator, and Concatenation

>> ZZ = zeros(4,8);
>> OO = ones(5,5);
>> RR = 0 + (100 – 0)*rand(4,20);

Figure 1b, Creating 2D Arrays Using Built in Functions

3

Indexing 2D Arrays
Elements of 2D arrays are indexed similar to elements of 1D arrays; using the array name and
the position. For 2D arrays both the row and column index (or range of row and column indices)
must be specified. Figure 3 shows examples of indexing a single element, a row, a column, and
a rectangular subsection of a 2D array.

The end keyword when used in an indexing expression it is equivalent to the size of the
dimension it is being used to index, i.e. the last index along that dimension. The colon operator
used by itself when indexing is equivalent to 1:1:end along that dimension and selects and
entire row or an entire column. Arrays can also be indexed using an array of Booleans of the
same dimensions that contains trues (1s) for the elements to be indexed.

>> AA = [1:1:10; 11:1:20 ; 21:1:30];
>> length(AA)
ans = 10
>> D = size(AA)
D = 3 10
>> [M, N] = size(AA)
M = 3
N = 10
>> nrow = size(AA,1)
nrow = 3
>> ncol = size(AA,2)
ncol = 10

Figure 2, Using size and length Commands with 2D Arrays

>> AA = [1:1:6; 2:2:12; 3:3:18]; % 3 by 6 array
>> AA(2,4) % element in row 2 column 4
ans = 8
>> AA(2,1:1:end) % row 2
ans = 2 4 6 8 10 12
>> AA(:,3) % column 3
ans = 3
 6
 9
>> BB = AA(1:1:2,3:1:5) % rows 1-2, columns 3-5
ans = 3 4 5
 6 8 10

Figure 3, Indexing 2D Arrays

4

Modifying and Removing Elements of 2D Arrays
As for 1D arrays, one can modify a portion of a 2D array by specifying the range to modify and
providing the appropriate number of new values; i.e. index the places in the array to be
modified and assign new values to those places.

Rows or columns can be added to 2D arrays using concatenation and rows or columns can be
removed from array by specifying the range to remove and assigning the empty vector to the
specified elements; i.e. index the places to be removed and assign the empty vector to those
places. One must be careful when adding or removing elements to a 2D array to ensure that all
the rows of the resulting array have the same number of columns and all the columns have the
same number of rows. Entire rows or columns must be removed and resulting array must be
rectangular.

Array Transpose
The transpose (and conjugate transpose) operator changes the rows of an array to columns and
the columns of an array to rows.

()

1

2
1 2 m

m

a
a

a a a

a

T

 =

 and ()

1

2
1 2 m

m

a
a

a a a

a

T

 =

The transpose of an m by n array is an n by m array. The transpose operator in MATLAB is a
period followed by a single quote and is a post operator, i.e. it is given to the right of the
variable. If the matrix is composed of complex values, the single quote operator can be used to
take the complex conjugate transpose (transpose rows and columns and tale complex
conjugate of each value). When the array consists of all real numbers it does not matter which
transpose operator you use. Figure 5 shows examples of the MATLAB transpose operation.

>> DD = [1:1:6; 2:2:12; 3:3:18]; % 3 by 6 array
>> DD(2,4) = 99; % modify element 2,4
>> DD(:,3) = [79; 89; 99]; % modify column 3
>> DD(:,5) = []; % remove column 5
>> disp(DD)
DD = 1 2 79 4 6
 2 4 89 99 12
 3 6 99 12 18

Figure 4, Modifying and Removing Elements of 2D Arrays

5

Arithmetic Operations on 2D Arrays
MATLAB supports matrix (regular) and array (element by element) arithmetic operations on 2D
arrays just as it does for 1D arrays. MATLAB’s array (element by element or dot) operations can
be performed on the elements of 2D arrays as long as the operation involves two 2D arrays of
the same size or a 2D array and a scalar.

As with 1D arrays, one must be careful to use the matrix operations and the array operations
correctly. Generally when operations are to be performed on corresponding elements of two
arrays, the array operations should be used. When one of the operands is a scalar and for
addition and subtraction the dot operation is not needed. Figure 6 shows some examples of 2D
array arithmetic operations.

>> AA = [0 1 2; 3 4 5]; % 2 by 3 array
>> BB = AA.’
BB = 0 3
 1 4
 2 5
>> CC = [2+3j, 1-5j]
CC = 2.0 + 3.0i 1.0 - 5.0i
>> CC'
ans = 2.0 - 3.0i
 1.0 + 5.0i
>> CC.'
ans = 2.0 + 3.0i
 1.0 - 5.0i

Figure 5, Array Transpose and Conjugate Array Transpose Examples

>> AA = [3, 2, 1; 8, 7, 6]; % 2 by 3 array
>> BB = [1, 2, 3; 4, 5, 6]; % 2 by 3 array
>> AA + 2
ans = 5 4 3
 10 9 8
>> AA/2
ans = 1.5 1 0.5
 4 3.5 3
>> AA.*BB
ans = 3 4 3
 32 35 36

Figure 6, 2D Array Arithmetic Operations

6

Applying Built in Functions to 2D Arrays
MATLAB functions will generally accept 2D arrays as arguments just as they accept scalars and
1D arrays. Generally MATLAB functions perform their operation on each element in the
argument and return a result the same size as the argument. Remember that MATLAB’s help
can be used to determine the arguments needed and the different variations of the built in
functions.

When the MATLAB functions sum and mean are applied to 2D arrays, they return a 1D row
array containing the sum or mean of the elements in each column of the 2D array. If one
wanted the sum or mean of all the elements in a 2D array, one could apply the function twice.
The sum and mean functions also have versions that allow one to specify what dimension to
apply the function along.

When the MATLAB functions min and max are applied to 2D arrays, they return the minimum
or maximum element in each column of the array as well as the row location of the minimum
or maximum element in the column. Applying the min or max functions twice to a 2D array
returns the minimum or maximum element in the 2D array.

Logic and Relational Operations on 2D Arrays
MATLAB’s logical and relational operations can be performed on all the elements of a 2D array
as long as the operation involves two arrays of the same size or an array and a scalar. The same
guidelines provided for 1D arrays should be followed for logic and relational operations using
2D arrays.

>> data = [8, 6, 8, 7; 5, 6, 6, 4; 7, 7, 10, 9];
>> sumOfData = sum(data)
sumOfData = 20 19 24 20
>> sumOfAllData = sum(sum(data))
sumOfAllData = 83
>> meanOfDataRows = mean(data,2)
meanODataRows = 7.2500
 5.2500
 8.2500
>> [minOfData, loc] = min(data)
minOfData = 5 6 6 4
loc = 2 1 2 2
>> maxOfAllData = max(max(data))
maxOfAllData = 10

Figure 7, MATLAB sum, mean, min, and max Functions Applied to 2D Arrays

7

Linearized Arrays (Optional)
Multidimensional arrays (2D arrays, 3D arrays, etc) are stored in memory as a linearized array.
One can think of a multidimensional array as being a vector with first the values from column 1,
then the values from column 2 etc. Consider the 3 by 4 array AA

1 7 2 4
8 0 0 3
0 1 5 5

AA

 =

The array AA is stored in memory as a vector ()1 8 0 7 0 1 2 0 5 4 3 5 .
Understanding linearized arrays is necessary for understanding how MATLAB's find function
operates. The find function returns a linearized array of indices that can be used to access the
array.

Notice in the example of Figure 8a that the MATLAB find function does not return row and
column indices where a relation is true but rather returns the linearized indices. For linearized
indices, one counts down columns starting from the element in row one column one. In the
array AA above, linearized index 6 corresponds to element 3,2 (element in row 3 column 2) and
linearized index 8 corresponds to element 2,3. One can index 2D arrays using either the row
and column indices or linearized indices as shown in Figure 8b.

Last modified Tuesday, September 09, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

>> AA = [1 7 2 4; 8 0 0 3; 0 1 5 5];
>> ind = find(AA == 8)
ind = 2
>> inds = find(AA > 4)
inds = 2
 4
 9
 12

Figure 8a, Linearized Arrays and Result of find Function

>> AA = [1 7 2 4; 8 0 0 3; 0 1 5 5];
>> AA(6) % index element 3,2
ans = 1
>> AA(3,2) % index element 3,2
ans = 1
>> AA(1:6) % index columns 1 and 2
ans = 1 8 0 7 0 1

Figure 8b, Indexing 2D Arrays using Linearized Indices

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	MATLAB 2D Arrays
	Creating 2D Arrays
	Size of Arrays
	Indexing 2D Arrays
	Modifying and Removing Elements of 2D Arrays
	Array Transpose
	Arithmetic Operations on 2D Arrays
	Applying Built in Functions to 2D Arrays
	Logic and Relational Operations on 2D Arrays
	Linearized Arrays (Optional)

