
1

Armstrong State University
Engineering Studies

MATLAB Marina – 1D Arrays and Vectors Primer

Prerequisites
The 1D Arrays and Vectors Primer assumes knowledge of the MATLAB IDE, MATLAB help,
arithmetic operations, built in functions, scripts, and variables. Material on these topics is
covered in the MATLAB Marina Introduction to MATLAB module and MATLAB Marina Variables
module.

Learning Objectives
1. Be able to create and use MATLAB 1D arrays.
2. Be able to index MATLAB 1D arrays.
3. Be able to perform arithmetic and logic operations and apply built in functions on MATLAB

1D arrays.

Terms
scalar, 1D array, vector, index, indexing (extracting, slicing), colon operator, colon notation,
concatenation, array operation, element by element operation

MATLAB Functions, Keywords, and Operators
:, length, size, zeros, ones, min, max, mean, sum, cumsum, find, end, (), []

MATLAB 1D Arrays
A scalar is a single element. A 1D array or vector is a one-dimensional collection of data of the
same data type. For example a 1D array []1021 v vvv = of 10 integers could either be a row
(1 by 10) or column (10 by 1) of ten integer values.

MATLAB Colon Operator
The MATLAB colon operator allows one to create a range of values without using a loop
structure; K:L is the same as [K, K+1, K+2, …, L] and K:D:L is the same as [K, K+D, K+2D,…, L].
Figure 1 shows two examples of using the colon operator to create ranges of numbers.

>> 1:1:8
ans = 1 2 3 4 5 6 7 8
>> 0.0:0.25:2.5
ans = 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Figure 1, Creating Ranges of Numbers using the Colon Operator

2

Creating 1D Arrays
There are several ways to create 1D arrays (vectors) in MATLAB: entering the values directly
enclosed by square brackets (row elements separated by commas or spaces and elements in
columns separated by semicolons), using the colon operator, using built in MATLAB functions
such as linspace, zeros, ones, and rand, and created as the result of operations on 1D
arrays. Figure 2a shows examples of creating 1D arrays by directly entering the values and
using the colon operator. Figure 2b shows examples of creating 1D arrays using built in MATLAB
functions.

Multiple 1D arrays can be concatenated to create larger 1D arrays. MATLAB’s 1D array
concatenation is similar to directly entering 1D arrays. Row arrays are concatenated by
providing the list of 1D row arrays enclosed in square brackets separated by spaces or commas.
Column arrays are concatenated by providing the list of 1D column arrays enclosed in square
brackets separated by semicolons.

>> emptyVector = []
emptyVector = []
>> vecDirect = [3, 7, -1, 2]
vecDirect = 3 7 -1 2
>> vecColon = 0:2:20
vecColon = 0 2 4 6 8 10 12 14 16 18 20

Figure 2a, Creating 1D Arrays Using Direct Entry and the Colon Operator

>> vecLinspace = linspace(0,5,10);
vecLinspace = 0 0.5556 1.1111 1.6667 2.2222 2.7778
3.3333 3.8889 4.4444 5.0000
>> rowvecZeros = zeros(1,5);
rowvecZeros = 0 0 0 0 0
>> colvecOnes = ones(7,1);
>> vecRand = rand(1,100);

Figure 2b, Creating 1D Arrays Using Built in Functions

>> row1 = [2, 4, -6];
>> row2 = [1, 3, 5];
>> row = [row1 , row2];
>> col1 = [2; 4; -6];
>> col2 = [1; 3; 5];
>> col = [col1 ; col2];

Figure 2c, 1D Array Concatenation

3

Indexing 1D Arrays
The individual items in a 1D array are called elements and the position in the 1D array is called
the index. For example, the 1 by 6 array vec = [13, 7, -5, 2, 63, 8] contains the
element 13 at index 1, 7 and index 2, and 8 at index 6. Individual elements of a 1D array can be
indexed (accessed) using the array name and the index (position) enclosed in parentheses.
Multiple elements that are successive can be indexed by a providing range of indexes. Figure 3
illustrates how to index the 4th element and the third through sixth elements of the 1D array.

Indexing arrays is also called slicing, accessing, and extracting.

Modifying and Removing Elements of Arrays
One can modify a portion of an array by specifying the range to modify and providing the
appropriate number of new values; i.e. index the places in the array to be modified and assign
new values to those places. Elements can be added to the beginning or end of a 1D array using
concatenation. Elements can be removed from an array by specifying the range to remove and
assigning the empty vector to the specified elements; i.e. index the places to be removed and
assign the empty vector to those places.

Useful Reserved Words and Built in Functions for Arrays
The size and length functions provide information about the dimensions of a variable. The
length function returns the length of a 1D array (vector). If the argument is more than one-
dimensional it returns the value of the largest dimension. The size function returns the
dimensions of the variable. For 1D arrays it is generally better to use the length function.

The end reserved word when used in an indexing expression it is equivalent to the size of the
dimension it is being used to index, i.e. the last index along that dimension. Using the colon
operator by itself when indexing is equivalent to using 1:1:end along that dimension.

>> vec = [13, 7, -5, 2, 63, 8];
>> vec(4)
ans = 2
>> vec(3:1:6)
ans = -5 2 63 8

Figure 3, Indexing 1D Arrays

>> vec = [13, 7, -5, 2, 63, 8];
>> vec(2) = 0
vec = 13 0 -5 2 63 8
>> vec(4:end) = zeros(1,3)
vec = 13 0 -5 0 0 0
>> vec(3) = []
vec = 13 0 0 0 0

Figure 4, Modifying and Removing Elements of Arrays

4

Arithmetic Operations on 1D Arrays
MATLAB supports two types of arithmetic operations: matrix (regular) operations and array
(element by element or dot) operations. Array operations (addition, subtraction, multiplication,
division, power) can be performed on the elements of 1D arrays as long as the operation
involves two 1D arrays of the same size or a 1D array and a scalar. Array operations are
performed element by element. MATLAB does not have separate operators for array addition
and subtraction as array addition and subtraction are defined the same as matrix addition and
subtraction. Figures 6a and 6b show some examples of array arithmetic operations. Note that
when one of the operands is a scalar and for addition and subtraction the dot operation is not
needed.

>> vec = [13, 7, -5, 2, 63, 8];
>> length(vec)
ans = 6
>> vec(4:end)
ans = 2 63 8
>> vec(:)
ans = 13 7 -5 2 63 8

Figure 5, Examples of Using length function, end keyword, and : Operator

>> vec1 = [1 3 5 9 13];
>> vec2 = [2 1 2 4 3];
>> vec1 + 1
ans = 2 4 6 10 14
>> vec3 = vec1 + vec2
vec3 = 3 4 7 13 16
>> vec4 = vec1 - vec2
vec4 = -1 2 3 5 10

Figure 6a, 1D Array Addition and Subtraction

>> vec1 = [1 3 5 9 13];
>> vec2 = [2 1 2 4 3];
>> 2*vec1
ans = 2 6 10 18 26
>> vec3 = vec1.*vec2
vec3 = 2 3 10 36 39
>> vec4 = vec1./vec2
vec4 = 0.5 3 2.5 2.25 4.33
>> vec5 = vec1.^2
vec5 = 1 9 25 81 169

Figure 6b, 1D Array Multiplication, Division, and Power

5

Be careful to use the matrix operations and the array operations correctly. Generally when
operations are to be performed on corresponding elements of two arrays, the array operations
should be used.

Applying Built in Functions to 1D Arrays
Built in MATLAB functions will generally accept either scalars or arrays as arguments. Generally
MATLAB functions perform their operation on each element in the argument and return a
result the same size as the argument. Some of the more commonly used MATLAB functions are:
cos (cosine), sin (sine), sqrt (square root), pow (power), exp (exponential), log (natural
log), and log10 (log base 10). Remember that MATLAB’s help can be used to determine the
arguments needed and the different variations of the built in functions.

The built in MATLAB functions sum, mean, min, and max are commonly used to operate on
arrays but they do not return a result of the same size. The sum and mean functions return the
sum of the elements in the array and the mean of the elements in the array. The min and max
functions return the value of the minimum and maximum element in the vector as well as the
location of the element in the vector.

Logic and Relational Operations on 1D Arrays
MATLAB supports the element by element relational operators: less than (<), greater than (>),
less than or equal to (<=), greater than or equal to (>=), equality (==), not equal (~=) and the
element by element logical operators not (~), and (&), or (|). There are additional logic
operations such as exclusive or (xor) supported though built in functions. Element by element
logical and relational operations can be performed on all the elements of an array as long as the
operation involves two arrays of the same size or an array and a scalar.

There are short circuit versions of logic and (&&) and logic or (||). The short circuit versions of
the logic operators must produce a scalar result and only use the second operand if the result
cannot be determined from the first operand. In most cases, the element by element logic
operators should be used.

>> data = [8, 4, 6, 9, 10, 8, 7, 2, 5];
>> meanOfData = mean(data)
meanOfData = 6.5556
>> minOfData = min(data)
minOfData = 2
>> [maxOfData, loc] = max(data)
maxOfData = 10
loc = 5
>> sumOfData = sum(data)
sumOfData = 59

Figure 7, MATLAB sum, mean, min, and max Functions

6

Figure 8 shows some example of logic and relational operations on 1D arrays.

MATLAB treats the value of 0 as false and the value of 1 as true (actually any nonzero value is
treated as true).

Array indexing can be performed using arrays of logical values (true, 1 and false , 0) as long as
the logic array is the same size as the array being indexed. When indexing with logic arrays, the
elements corresponding to the true indices are returned.

MATLAB find Function
The find function returns the linear indices corresponding to the locations where a condition
evaluates to true. If the condition is the vector, then find returns the indices of the nonzero
values. In effect, the find function converts a logic array of 0s and 1s to an array of indices
corresponding to the places where the logic array is true.

Either a logic array or array of indices can be used to index an array to extract the elements in
the array matching the condition.

>> vec1 = [1 3 5 9 13];
>> vec2 = [2 1 2 4 3];
>> vec1 > vec2
ans = 0 1 1 1 1
>> vec1 < 5
ans = 1 1 0 0 0
>> res = (vec1 > 4) & (vec1 < 10)
res = 0 0 1 1 0

Figure 8, MATLAB Logic and Relational Operations

>> vec1 = [1 3 5 9 13];
>> res = (vec1 > 4) & (vec1 < 10)
res = 0 0 1 1 0
>> vec1(res)
ans = 5 9

Figure 9, Indexing with a Logic Array

>> vec1 = [1 3 5 9 13];
>> ind = find((vec1 > 4) & (vec1 < 10))
ind = 3 4
>> vec1(ind)
ans = 5 9

Figure 10, Using find to Convert Logic Array to Indices

7

Using Arrays and Array Operations to Evaluate Formulas
MATLAB’s arrays and array operations are useful for many engineering applications such as:
evaluating a function for a range of values, determining the min and max values of a function
over some range, and evaluating summations or approximating infinite summations.

The MATLAB program of Figure 11 evaluates and plots the function () 674 2 +−= tttf over the
range 0.50.5 ≤≤− t .

When evaluating a function over an independent variable range: first generate a vector of the
independent variable values being careful to use an appropriate interval between points and
then evaluate the function for the vector being careful to use array operations when
appropriate. Notice that when referring to the variable for the function, that f rather than
f(t) is used.

MATLAB interprets parentheses as either array indexing or enclosing the arguments of a
function call. If we tried to use the statement f(t) = 4*t.^2 - 7*t + 6; the program
would have a syntax error as MATLAB would evaluate the formula and then try to place the
result in the variable f in the range of indices in the variable t. Since array indices have to be
integers a syntax error results.

The following two statements could be used in place of the one statement to evaluate the
function:
ind = 1:1:length(t);
f(ind) = 4*t.^2 - 7*t + 6
In this case, an array of integer indices named ind of the same size as the result of evaluating
the function for the vector t is created. It is syntactically and logically correct to then place the
result of the formula evaluation into the places of the variable f indicated by the indices ind.
However this extra step is not necessary when a variable is being used for the first time or being

clear;
clc;
close all;
% vector of independent variable values
t = -5.0 : 0.1 : 5.0;
% evaluate and plot f(t) = 4t^2 – 7t + 6
f = 4*t.^2 - 7*t + 6;
figure(1)
plot(t,f);
xlabel('t (sec)');
ylabel('f(t)');

Figure 11, MATLAB Program to Evaluate Function f(t) = 4t^2 – 7t + 6

8

redefined. MATLAB will allocate enough space for the result of the operation and place the
elements of the result in the variable in the same order as the evaluation results in.

The MATLAB program of Figure 12 evaluates and plots the piecewise function

()








≤≤−
<≤−
<≤

=
4234
2114
102

tt
tt
tt

tf

The MATLAB program of Figure 13a determines an approximation of an infinite summation

∑
∞

=

=
1

1
n n

S for N terms. The approximation for N terms is ∑
=

=
N

n
N n

S
1

1 .

Figure 13b shows a version with several of the steps combined.

clear;
clc;
close all;
% generate each of the three time regions
t1 = 0.0 : 0.1 : 0.9;
t2 = 1.0 : 0.1 : 1.9;
t3 = 2.0 : 0.1 : 4.0;
% evaluate the piecewise function for each region
f1 = 2*t1;
f2 = 4*t2 – 1;
f2 = 4 – 3*t3;
% concatenate the results of the three regions for
% the entire piecewise function
t = [t1, t2, t3];
f = [f1, f2, f3];

Figure 12, MATLAB Program to Evaluate Piecewise Function

clear;
clc;
% number of terms in approximation
N = 20;
% generate array of term numbers
n = 1:1:N;
% evaluate the formula for each term
terms = 1./n;
% sum the terms
SN = sum(terms)

Figure 13a, MATLAB Program to Evaluate Approximation of Infinite Series

9

Last modified Tuesday, September 09, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

clear;
clc;
% number of terms in approximation
N = 20;
% generate array of term numbers and evaluate sum of terms
n = 1:1:N;
SN = sum(1./n)

Figure 13b , MATLAB Program to Evaluate Approximation of Infinite Series

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	MATLAB 1D Arrays
	MATLAB Colon Operator
	Creating 1D Arrays
	Indexing 1D Arrays
	Modifying and Removing Elements of Arrays
	Useful Reserved Words and Built in Functions for Arrays
	Arithmetic Operations on 1D Arrays
	Applying Built in Functions to 1D Arrays
	Logic and Relational Operations on 1D Arrays
	MATLAB find Function
	Using Arrays and Array Operations to Evaluate Formulas

